Widget HTML Atas

Ringkasan materi Integral dari Fungsi Aljabar Matematika SMA

Ringkasan materi Integral dari Fungsi Aljabar Matematika SMA.  ada pertanyaan sebagai berikut : "Bagaimana bentuk rumus Integral dari Fungsi Aljabar? ". untuk menjawab pertanyaan tersebut kalian dapat membaca Artikel Materi Matematika SMA tentang Rumus Integral dari Fungsi Aljabar, Contoh dan pembahasan soal Integral dari Fungsi Aljabar Latihan soal Integral dari Fungsi Aljabar.di Langsung Klik, langsung klik wadah tempat belajar untuk SMA, SMK dan MA. Langsung klik menyediakan materi, contoh, soal, rangkuman, ringkasan, buku saku, motivasi, saran untuk mempermudah belajar para siswa-siswi yang sedang menempuh pembelajaran di tingkat SMA,SMK dan MA.
Integral dari Fungsi Aljabar
Integral dari Fungsi Aljabar ( Matematika SMA )

Integral dari Fungsi Aljabar

A. Pendahuluan

Secara umum integral dapat dibedakan menjadi dua, yaitu integral tak tentu dan integral tentu.

Integral tak tentu fungsi f(x) dinyatakan oleh :

∫ f(x) dx = F(x) + C

dengan :
f(x) = integran/fungsi yang diintegralkan
F(X) = anti turunan dari f(x)
C = konstanta

B. Rumus Dasar Integral

Untuk f(x) = a dengan a konstan, maka :
$$\mathrm{\mathbf{\int a\:dx=ax+C}}$$ 
Contoh
1.  ∫ 2 dx = 2x + C
2.  ∫ \(\frac{1}{2}\) dx = \(\frac{1}{2}\)x + C


Untuk f(x) = axn , n ≠ −1 maka :
$$\mathrm{\mathbf{\int ax^{n}\:dx=\frac{a}{n+1}x^{n+1}+C}}$$ 

Contoh
1.  ∫ 2x4 dx = ...

     Jawaban :
     ⇒ \(\mathrm{\frac{2}{4+1}}\)x4+1 + C
     ⇒ \(\mathrm{\frac{2}{5}}\)x5 + C

2.   ∫ x-6 dx = ...

     Jawaban :
     ⇒ \(\mathrm{\frac{1}{-6+1}}\)x-6+1 + C
     ⇒ \(\mathrm{-\frac{1}{5}}\)x-5 + C


Untuk f(x) = (ax + b)n , n ≠ −1 maka :
$$\mathrm{\mathbf{\int (ax+b)^{n}\:dx=\frac{1}{a(n+1)}x^{n+1}+C}}$$ 

Contoh
1.  ∫ (2x − 1) 4 dx = ...

     Jawaban :
     ⇒ \(\mathrm{\frac{1}{2(4+1)}}\)(2x − 1)4+1 + C
     ⇒ \(\mathrm{\frac{1}{10}}\)(2x − 1)5 + C


2.  ∫ (x + 1)-7 dx = ...

     Jawaban :
     ⇒ \(\mathrm{\frac{1}{1(-7+1)}}\)(x + 1)-7+1 + C
     ⇒ \(\mathrm{-\frac{1}{6}}\)(x + 1)-6 + C


Untuk f(x) = \(\mathrm{\mathbf{\frac{1}{x}}}\), maka :
$$\mathrm{\int \mathbf{\frac{1}{x}\:dx=ln|x|+C}}$$

Untuk menentukan integral yang integrannya memuat bentuk akar atau pecahan, langkah awal yang harus dilakukan adalah mengubah terlebih dahulu integran tersebut ke bentuk eksponen (pangkat).
Berikut beberapa sifat akar dan pangkat yang sering digunakan :
  1. \(\mathrm{x^{m}.\;x^{n}=x^{m+n}}\)
  2. \(\mathrm{\frac{x^{m}}{x^{n}}=x^{m-n}}\)
  3. \(\mathrm{\frac{1}{x^{n}}=x^{-n}}\)
  4. \(\mathrm{\sqrt{x}=x^{\frac{1}{2}}}\)
  5. \(\mathrm{x\sqrt{x}=x^{\frac{3}{2}}}\)
  6. \(\mathrm{\sqrt[\mathrm{n}]{\mathrm{x^{m}}}=x^{\frac{m}{n}}}\)
Contoh
1.  \(\mathrm{\int \sqrt{x}\:dx=}\)

     Jawaban :
     \(\mathrm{\Rightarrow \int x^{\frac{1}{2}}\:dx}\)
     \(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+C}\)
     \(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+C}\)
     \(\mathrm{=\frac{2}{3}x\sqrt{x}+C}\)

2.  \(\mathrm{\int \frac{1}{x^{2}}\:dx=}\)

     Jawaban :
     \(\mathrm{\Rightarrow \int x^{-2}\:dx}\)
     \(\mathrm{=\frac{1}{-2+1}x^{-2+1}+C}\)
     \(\mathrm{=-x^{-1}+C}\)
     \(\mathrm{=-\frac{1}{x}+C}\)

3.  \(\mathrm{\int x\sqrt[3]{\mathrm{x^{2}}}\:dx=}\)

     Jawaban :
     \(\mathrm{\Rightarrow \int x.x^{\frac{2}{3}}\:dx}\)
     \(\mathrm{\Rightarrow \int x^{\frac{5}{3}}\:dx}\)
     \(\mathrm{=\frac{1}{\frac{5}{3}+1}x^{\frac{5}{3}+1}+C}\)
     \(\mathrm{=\frac{3}{8}x^{\frac{8}{3}}+C}\)
     \(\mathrm{=\frac{3}{8}\sqrt[3]{x^{8}}+C}\) atau
     \(\mathrm{=\frac{3}{8}x^{2}\sqrt[3]{x^{2}}+C}\)

C. Sifat-Sifat Integral

1.  ∫ k f(x) dx = k ∫ f(x) dx   (k = konstan)

     Contoh
     ∫ 3x4 dx = 3 ∫ x4 dx
     ∫ 3x4 dx = 3 . \(\mathrm{\frac{1}{5}x^{5}+C}\)
     ∫ 3x4 dx =  \(\mathrm{\frac{3}{5}x^{5}+C}\)


    2.  ∫{f(x) ± g(x)} dx =  ∫ f(x) dx ± ∫ g(x) dx

         Contoh
         ∫ (4x2 + 3x − 2) dx = ...
         ⇒  ∫ 4x2 dx + ∫ 3x dx − ∫ 2 dx
         = \(\mathrm{\frac{4}{3}x^{3}+\frac{3}{2}x^{2}-2x+C}\)

    D. Latihan Soal Integral Fungsi Aljabar

    Latihan 1
    Tentukan integral berikut !
        
    a.  ∫ (3x7 − π) dx = ...
         Jawaban :
         = \(\mathrm{\frac{3}{7+1}}\)x7+1 − πx + C
         = \(\mathrm{\frac{3}{8}}\)x8 − πx + C

    b. ∫ (6x5 + 2x3 − x2) dx = ...
         Jawaban :
         \(\mathrm{= \frac{6}{5+1}x^{5+1}+\frac{2}{3+1}x^{3+1}-\frac{1}{2+1}x}^{2+1}+C\)
         \(\mathrm{= x^{6}+\frac{1}{2}x^{4}-\frac{1}{3}x}^{3}+C\)

    c. \(\mathrm{\int \frac{6x^{5}-2x^{4}+9}{x^{4}}\:dx=...}\)
         Jawaban :
         \(\mathrm{\Rightarrow \int \left (\frac{6x^{5}}{x^{4}}-\frac{2x^{4}}{x^{4}}+\frac{9}{x^{4}}  \right )\:dx}\)
         \(\mathrm{\Rightarrow \int \left (6x-2+9x^{-4}  \right )dx}\)
         \(\mathrm{=\frac{6}{1+1}x^{1+1}-2x+\frac{9}{-4+1}x^{-4+1}+C}\)
         \(\mathrm{=3x^{2}-2x-3x^{-3}+C}\)
         \(\mathrm{=3x^{2}-2x-\frac{3}{x^{3}}+C}\)

    d. \(\mathrm{\int \left (\sqrt{x}+\frac{2}{\sqrt{x}}  \right )\:dx=...}\)
         Jawaban :
         \(\mathrm{\Rightarrow \int \left ( x^{\frac{1}{2}}+2x^{-\frac{1}{2}} \right )dx}\)
         \(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+\frac{2}{-\frac{1}{2}+1}x^{-\frac{1}{2}+1}+C}\)
         \(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+4x^{\frac{1}{2}}+C}\)
         \(\mathrm{=\frac{2}{3}x\sqrt{x}+4\sqrt{x}+C}\)

    e. \(\mathrm{\int \left ( x\sqrt{x}-\frac{x}{\sqrt{x}} \right )dx=...}\)
         Jawaban :
         \(\mathrm{\Rightarrow \int \left (x^{\frac{3}{2}}-x^{\frac{1}{2}}  \right )dx}\)
         \(\mathrm{=\frac{2}{5}x^{\frac{5}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C}\)
         \(\mathrm{=\frac{2}{5}x^{2}\sqrt{x}-\frac{2}{3}x\sqrt{x}+C}\)

    f.  \(\mathrm{\int \left ( \sqrt{x}+\frac{1}{ \sqrt{x}} \right )^{2}\:dx=}\)
         Jawab :
         \(\mathrm{\Rightarrow \int \left (x+2+\frac{1}{x}  \right )\:dx}\)
         \(\mathrm{=\frac{1}{1+1}x^{1+1}+2x+ln|x|+C}\)
         \(\mathrm{=\frac{1}{2}x^{2}+2x+ln|x|+C}\)

    g.  \(\mathrm{\int \frac{1}{\sqrt[3]{(3x+1)^{2}}}\:dx}\)
         Jawaban :
         \(\mathrm{\Rightarrow \int (3x+1)^{-\frac{2}{3}}\:dx}\)
         \(\mathrm{=\frac{1}{3\left ( -\frac{2}{3}+1 \right )}(3x+1)^{-\frac{2}{3}+1}+C}\)
         \(\mathrm{=(3x+1)^{\frac{1}{3}}+C}\)
         \(\mathrm{=\sqrt[3]{3x+1}+C}\)


    Latihan 2
    Tentukan f(x) jika diketahui :

    a.  f '(x)  = 2x + 2 ; f(0) = −1

         Jawaban :
         f(x) = ∫ f '(x) dx
         f(x) = ∫ (2x + 2) dx
         f(x) = x2 + 2x + C

         f(0) = −1
         ⇔  (0)2 + 2(0) + C = −1
         ⇔  C = −1

         Jadi, f(x) = x2 + 2x − 1

    b.  f ''(x) = 12x − 2 ; f(0) = 2 dan f '(1) = 4

         Jawaban :
         f '(x) = ∫ f ''(x) dx
         f '(x) =  ∫ (12x − 2) dx
         f '(x) = 6x2 − 2x + C

         f '(1) = 4
         ⇔  6(1)2 − 2(1) + C = 4
         ⇔  C = 0

         diperoleh : f '(x) = 6x2 − 2x

         f(x) = ∫ f '(x) dx
         f(x) = ∫ (6x2 − 2x) dx
         f(x) = 2x3 − x2 + C

         f(0) = 2
         ⇔  2(0)3 − (0)2 + C = 2
         ⇔  C = 2

         Jadi, f(x) = 2x3 − x2 + 2



    Materi Belajar Matematika Lainnya :

    Materi Matematika SMA
    Demikianlah materi tentang Integral dari Fungsi Aljabar (Matematika SMA. semoga bermanfaat

    Posting Komentar untuk "Ringkasan materi Integral dari Fungsi Aljabar Matematika SMA"